Global Asymptotic Stability of a Forced Newtonian System with Dissipation
نویسندگان
چکیده
منابع مشابه
Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کاملon the global asymptotic stability for a rational recursive sequence
the main objective of this paper is to study the boundedness character, the periodicity character, the convergenceand the global stability of the positive solutions of the nonlinear rational difference equation/ , n 0,1,2,....0 01 kii n ikin i n i x x b xwhere the coefficients i i b , , together with the initial conditions ,.... , , 1 0 x x x k are arbitrary...
متن کاملPermanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response
Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.
متن کاملNoise-Induced Global Asymptotic Stability
We prove analytically that additive and parametric (multiplicative) Gaussian distributed white noise, interpreted in either the It6 or Stratonovich formalism, induces global asymptotic stability in two prototypical dynamical systems designated as supercritical (the Landau equation) and subcritical, respectively. In both systems without noise, variation of a parameter leads to a switching betwee...
متن کاملGlobal asymptotic and exponential stability of a dynamic neural system with asymmetric connection weights
that ImE V1(k) V2(k) KerD(k) for all k 2 Z Z Z: In this case, the minimal order of dynamic compensator which solves the DRPDC is given by E min := min dim k2z z z V 2 (k) 0 dim k2z z z V 1 (k) Proof: The proof follows from Theorems 4.2 and 4.3. Corollary 4.4: Assume that (k) is equal to a constant for all k 2 Z
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1995
ISSN: 0022-247X
DOI: 10.1006/jmaa.1995.1454